805 research outputs found

    Recent transonic unsteady pressure measurements at the NASA Langley Research Center

    Get PDF
    Four semispan wing model configurations were studied in the Transonic Dynamics Tunnel (TDT). The first model had a clipped delta planform with a circular arc airfoil, the second model had a high aspect ratio planform with a supercritical airfoil, the third model has a rectangular planform with a supercritical airfoil and the fourth model had a high aspect ratio planform with a supercritical airfoil. To generate unsteady flow, the first and third models were equipped with pitch oscillation mechanisms and the first, second and fourth models were equipped with control surface oscillation mechanisms. The fourth model was similar in planform and airfoil shape to the second model, but it is the only one of the four models that has an elastic wing structure. The unsteady pressure studies of the four models are described and some typical results for each model are presented. Comparison of selected experimental data with analytical results also are included

    Transonic steady- and unsteady-pressure measurements on a high-aspect-ratio supercritical-wing model with oscillating control surfaces

    Get PDF
    A supercritical wing with an aspect ratio of 10.76 and with two trailing-edge oscillating control surfaces is described. The semispan wing is instrumented with 252 static orifices and 164 in situ dynamic-pressure gages for studying the effects of control-surface position and motion on steady- and unsteady-pressures at transonic speeds. Results from initial tests conducted in the Langley Transonic Dynamics Tunnel at two Reynolds numbers are presented in tabular form

    Transonic unsteady airloads on an energy efficient transport wing with oscillating control surfaces

    Get PDF
    An aspect ratio 10.8 supercritical wing with oscillating control surfaces is described. The wing is instrumental with 252 static orifices and 164 in situ dynamic pressure transducers for studying the effects of control surface deflection on steady and unsteady pressures at transonic speeds. Results from initial wind tunnel tests conducted in the Langley Transonic Dynamics Tunnel are discussed. Unsteady pressure results are presented for two trailing edge control surfaces oscillating separately at the design Mach number of 0.78. Some experimental results are compared with analytical results obtained by using linear lifting surface theory

    Laser Radar Measurements of Atmospheric Potassium

    Get PDF
    A dye laser capable of transmitting in the near infra red region of the spectrum has been constructed to be used in conjunction with the large Mark II laser system at present in existence at Kingston, Jamaica. Preliminary measurements have been obtained of concentration of atomic potassium in the 70-100 km region of the atmosphere. The data indicates the likelihood of a double peak in the height distribution. The lower peak, which is the" larger, is at a height of about 82 kIn, the upper peak is at a height of 94 kIn. Although an exact value for the scattering cross-section has not been obtained, a reasonable approximation of this parameter yields a value of about 1-15 x 10(exp 11) m(exp -2) for the column density of atomic potassium, which is in agreement with other data

    A Transiting Jupiter Analog

    Get PDF
    Decadal-long radial velocity surveys have recently started to discover analogs to the most influential planet of our solar system, Jupiter. Detecting and characterizing these worlds is expected to shape our understanding of our uniqueness in the cosmos. Despite the great successes of recent transit surveys, Jupiter analogs represent a terra incognita, owing to the strong intrinsic bias of this method against long orbital periods. We here report on the first validated transiting Jupiter analog, Kepler-167e (KOI-490.02), discovered using Kepler archival photometry orbiting the K4-dwarf KIC-3239945. With a radius of (0.91±0.02)(0.91\pm0.02) RJupR_{\mathrm{Jup}}, a low orbital eccentricity (0.06−0.04+0.100.06_{-0.04}^{+0.10}) and an equilibrium temperature of (131±3)(131\pm3) K, Kepler-167e bears many of the basic hallmarks of Jupiter. Kepler-167e is accompanied by three Super-Earths on compact orbits, which we also validate, leaving a large cavity of transiting worlds around the habitable-zone. With two transits and continuous photometric coverage, we are able to uniquely and precisely measure the orbital period of this post snow-line planet (1071.2323±0.00061071.2323\pm0.0006 d), paving the way for follow-up of this K=11.8K=11.8 mag target.Comment: 14 pages, 10 figures. Accepted to ApJ. Posteriors available at https://github.com/CoolWorlds/Kepler-167-Posterior

    Fundamental Physics with the Laser Astrometric Test Of Relativity

    Full text link
    The Laser Astrometric Test Of Relativity (LATOR) is a joint European-U.S. Michelson-Morley-type experiment designed to test the pure tensor metric nature of gravitation - a fundamental postulate of Einstein's theory of general relativity. By using a combination of independent time-series of highly accurate gravitational deflection of light in the immediate proximity to the Sun, along with measurements of the Shapiro time delay on interplanetary scales (to a precision respectively better than 0.1 picoradians and 1 cm), LATOR will significantly improve our knowledge of relativistic gravity. The primary mission objective is to i) measure the key post-Newtonian Eddington parameter \gamma with accuracy of a part in 10^9. (1-\gamma) is a direct measure for presence of a new interaction in gravitational theory, and, in its search, LATOR goes a factor 30,000 beyond the present best result, Cassini's 2003 test. The mission will also provide: ii) first measurement of gravity's non-linear effects on light to ~0.01% accuracy; including both the Eddington \beta parameter and also the spatial metric's 2nd order potential contribution (never measured before); iii) direct measurement of the solar quadrupole moment J2 (currently unavailable) to accuracy of a part in 200 of its expected size; iv) direct measurement of the "frame-dragging" effect on light by the Sun's gravitomagnetic field, to 1% accuracy. LATOR's primary measurement pushes to unprecedented accuracy the search for cosmologically relevant scalar-tensor theories of gravity by looking for a remnant scalar field in today's solar system. We discuss the mission design of this proposed experiment.Comment: 8 pages, 9 figures; invited talk given at the 2005 ESLAB Symposium "Trends in Space Science and Cosmic Vision 2020," 19-21 April 2005, ESTEC, Noodrwijk, The Netherland

    A Transiting Jupiter analog

    Get PDF
    Decadal-long radial velocity surveys have recently started to discover analogs to the most influential planet of our solar system, Jupiter. Detecting and characterizing these worlds is expected to shape our understanding of our uniqueness in the cosmos. Despite the great successes of recent transit surveys, Jupiter analogs represent a terra incognita, owing to the strong intrinsic bias of this method against long orbital periods. We here report on the first validated transiting Jupiter analog, Kepler-167e (KOI-490.02), discovered using Kepler archival photometry orbiting the K4-dwarf KIC-3239945. With a radius of (0.91±0.02)(0.91\pm 0.02) RJ{R}_{{\rm{J}}}, a low orbital eccentricity (0.06−0.04+0.10{0.06}_{-0.04}^{+0.10}), and an equilibrium temperature of (131±3)(131\pm 3) K, Kepler-167e bears many of the basic hallmarks of Jupiter. Kepler-167e is accompanied by three Super-Earths on compact orbits, which we also validate, leaving a large cavity of transiting worlds around the habitable-zone. With two transits and continuous photometric coverage, we are able to uniquely and precisely measure the orbital period of this post snow-line planet (1071.2323 ± 0.0006d), paving the way for follow-up of this K = 11.8 mag target

    29P/Schwassmann-Wachmann: A Rosetta Stone for Amorphous Water Ice and CO <-> CO2 Conversion in Centaurs and Comets?

    Full text link
    Centaur 29P/Schwassmann-Wachmann 1 (SW1) is a highly active object orbiting in the transitional Gateway region (Sarid et al. 2019) between the Centaur and Jupiter Family Comet regions. SW1 is unique among the Centaurs in that it experiences quasi-regular major outbursts and produces CO emission continuously; however, the source of the CO is unclear. We argue that due to its very large size (approx. 32 km radius), SW1 is likely still responding, via amorphous water ice (AWI) conversion to crystalline water ice (CWI), to the rapid change in its external thermal environment produced by its dynamical migration from the Kuiper belt to the Gateway Region at the inner edge of the Centaur region at 6 au. It is this conversion process that is the source of the abundant CO and dust released from the object during its quiescent and outburst phases. If correct, these arguments have a number of important predictions testable via remote sensing and in situ spacecraft characterization, including: the quick release on Myr timescales of CO from AWI conversion for any few km-scale scattered disk KBO transiting into the inner system; that to date SW1 has only converted between 50 to 65% of its nuclear AWI to CWI; that volume changes upon AWI conversion could have caused subsidence and cave-ins, but not significant mass wasting or crater loss on SW1; that SW1s coma should contain abundant amounts of CWI CO2-rich icy dust particles; and that when SW1 transits into the inner system within the next 10,000 years, it will be a very different kind of JFC comet.Comment: 29 Pages, 3 Figures, 2 Tables, accepted 16-Sept-2022 by the Planetary Science Journal Corrected proof version 26-Oct-202
    • …
    corecore